[1] Das, A., & Rad, P. (2020). Opportunities and challenges in explainable artificial intelligence (xai): A survey. arXiv preprint arXiv:2006.11371.
[2] Gunning, D., & Aha, D. (2019). DARPA’s explainable artificial intelligence (XAI) program. AI magazine, 40(2), 44-58. https://doi.org/10.1609/aimag.v40i2.2850
[3] Minh, D., Wang, H. X., Li, Y. F., & Nguyen, T. N. (2022). Explainable artificial intelligence: a comprehensive review. Artificial Intelligence Review, 1-66. https://doi.org/10.1007/s10462-021-10088-y
[4] Rajabi, E., & Kafaie, S. (2022). Knowledge graphs and explainable ai in healthcare. Information, 13(10), 459. https://doi.org/10.3390/info13100459
[5] V7 Labs. (2022, November 9). AI in Radiology: Pros & Cons, Applications, and 4 Examples. Retrieved November 13, 2023, from https://www.v7labs.com/blog/ai-in-radiology
[6] Sankhe, A. (n.d.). What is explainable AI? 6 benefits of explainable AI. Retrieved November 28, 2023, from https://www.engati.com/blog/explainable-ai
[7] Khalegi, B. (2019, July 31st). The How of Explainable AI: Pre-modelling Explainability. Retrieved November 13, 2023, from https://towardsdatascience.com/the-how-of-explainable-ai-pre-modelling-explainability-699150495fe4
[8] Kamath, U. & Liu, J. (2021). Explainable Artificial Intelligence: An Introduction to Interpretable Machine learning. In Springer eBooks. https://doi.org/10.1007/978-3-030-83356-5
[9] Goyal, Y., Wu, Z., Ernst, J., Batra, D., Parikh, D., & Lee, S. (2019, May). Counterfactual visual explanations. In International Conference on Machine Learning (pp. 2376-2384). PMLR
[10] Li, X. H., Shi, Y., Li, H., Bai, W., Cao, C. C., & Chen, L. (2021, August). An experimental study of quantitative evaluations on saliency methods. In Proceedings of the 27th ACM sigkdd conference on knowledge discovery & data mining (pp. 3200-3208). https://doi.org/10.1145/3447548.3467148
[11] Ribeiro, M. T., Singh, S., & Guestrin, C. (2016, August). " Why should i trust you?" Explaining the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining (pp. 1135-1144).
[12] Lundberg, S. M., & Lee, S. I. (2017). A unified approach to interpreting model predictions. Advances in neural information processing systems, 30.
[13] Deloitte UK. (n.d.). A review of Explainable AI concepts, techniques, and challenges. Deloitte UK. Retrieved November 13, 2023, from https://www2.deloitte.com/uk/en/pages/deloitte-analytics/articles/a-review-of-explainable-ai-concepts-techniques-and-challenges.html
[14] Baniecki, H., & Biecek, P. (2023). Adversarial Attacks and Defenses in Explainable Artificial Intelligence: A Survey. arXiv preprint arXiv:2306.06123. https://doi.org/10.48550/arXiv.2306.06123
[15] Chuang, Y. N., Wang, G., Yang, F., Liu, Z., Cai, X., Du, M., & Hu, X. (2023). Efficient xai techniques: A taxonomic survey. arXiv preprint arXiv:2302.03225. https://doi.org/10.48550/arXiv.2302.03225
[16] European Commission. (2021, April 21). Proposal for a Regulation of the european parliament and of the council laying down harmonised rules on artificial intelligence (artificial intelligence act) and amending certain union legislative acts. Retrieved Novemer 14, 2023, from https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52021PC0206